СРАВНИТЕЛЬНАЯ ОЦЕНКА АНТИМИКРОБНОЙ АКТИВНОСТИ СЕРЕБРОСОДЕРЖАЩИХ ЦЕОЛИТОВ

H.E. Богданчикова 1 , B.A. Бурмистров 2 , $\Gamma.B.$ Одегова 3 , $\Pi.\Pi.$ Родионов 4 , K.HO. Михайлов 5 , E. Консепсион 6 , $\Gamma.$ Родригос-Фуентес 6

¹Центр по исследованию конденсированного состояния, Мексиканский университет

²ЗАО НПЦ «Вектор-Инвест» ³Институт катализа СО РАН

⁴Новосибирский институт экономики и менеджмента ⁵Сибирский университет потребительской кооперации ⁶Институт материалов и реактивов, Университет Гаваны, Куба

В настоящее время серебросодержащие цеолиты находят все большее применение, как в быту, например, для очистки воды, приготовления зубных паст так и в медицинской практике в качестве одной из основных мазевых компонент для лечения раневой инфекции. Сочетание таких важных свойств серебросодержащих цеолитов как антимикробная активностью серебра, высокая сорбционная емкостью цеолита и относительно невысокая стоимость делают данный препарат весьма перспективным для его широкого использования.

Целью данной работы являлось сравнительная оценка антимикробной активности серебросодержащего цеолита Ag/клиноптилолит с целью выявления оптимальных условий его приготовления.

Тестируемые образцы представляют собой порошки цеолита с иммобилизованными на них препаратами серебра. Для исследования был взят образец Ag/clino (Ag/C), который содержал $\sim 2\%$ серебра и был приготовлен при разных температурах восстановления.

Тест-штаммы. Были использованы типовые стандартные культуры микроорганизмов, рекомендованные ГосФармокопеей РФ для определения антимикробного действия препаратов:

- Bacillus subtilis ATCC 6633 №7241 (споровая культура)
- Escherichia coli ATCC 25922 (F-50)

В качестве основной питательной среды готовили питательный бульон (ПБ) из полуфабриката НИИ питательных сред следующего состава (Γ/π):

панкреотический гидролизат кильки

- натрия хлорид - 4,95 - рН - 7.2±0,2

Штаммы выращивали в течение 18-20 часов на скошенном РПА (рыбный питательный агар) с 0,1% глюкозы, суспендировали в физиологическом растворе, доводили концентрацию клеток до 10^9 на мл по стандарту мутности ОСО и готовили ряд 10-крвтных разведений до 10^3 клеток / мл, которые и использовали в работе.

Выбор адекватных условий измерения бактерицидной активности препаратов

На первом этапе была предпринята попытка воспроизвести в общих чертах методику определения антимикробной активности, приведенную в статье "Silver supported on natural Mexican zeolite as an antibacterial material" (M.Rivera-Garza, M.T. Olguin etc., Microporous and Mesoporous Material 39(2000) 431-444). Согласно этой методике в суспензию клеток (10^3 кл/мл) в дистиллированной воде добавляли навески образцов и выдерживали при постоянном перемешивании до 24 часов при 37°C, периодически отбирая пробы, которые рассеивались на чашечках Петри с питательным агаром с целью определения концентрации жизнеспособных клеток. Однако в наших экспериментах уже через 4 часа во всех пробах, отобранных от серебросодержащих образцов, живые клетки не обнаруживались, а через 24 часа и в контролях (контроль клеточной суспензии и контроль исходной матрицы) количество живых клеток значительно уменьшилось по сравнению с исходной концентрацией вплоть до полного исчезновения. То есть, из-за различных неблагоприятных факторов (осмотический удар, автолиз, лизис и т.д.) в дистиллированной воде происходила гибель клеток. В дополнительном эксперименте было обнаружено, что гибель клеток идет также и в физиологическом растворе.

В таблице 1 приведена динамика изменения концентрации клеток тест - штаммов в физиологическом растворе.

Согласно методикам Минздрава и ГосФармокопеи изучать бактерицидное действие препаратов на ослабленных культурах и в неблагоприятных для них развитии условиях не рекомендуется. Поэтому в дальнейшем эксперименты по определению антимикробной активности проводили на питательном бульоне с добавлением 0,1% глюкозы. В качестве тест - штамма остановились на использовании

Escherichia coli, как наиболее типичном представителе объектов санитарной среды.

Таблица 1 Динамика изменения концентрации клеток тест-штаммов Escherichia coli и Bacillus subtilis в физиологическом растворе

Тест штамм	Количество жизнеспособных клеток в 1 мл. физио-				
тест штамм	логического раствора				
	Исходное (0 час)	Через 4 часа	Через 24 часа		
Escherichia coli	80	61	0 (не обнаружено)		
Bacillus subtilis	44	38	16		

Постановка предварительного опыта:

60 мл питательной среды заражали 6 мл суспензии 18-20 часовой культуры E.coli с концентрацией клеток ~ 10⁴ на мл, после чего смесь разливали по 15 мл во флаконы (по два повтора) и вносили в них различные количества испытуемого препарата №3 AgC100 (5 и10 мг), концентрация которого таким образом составила соответственно 0,3 и 1,0 мг/л. Через 4 и 24 часа инкубации при 37°C производили рассев культурной жидкости на чашках Петри с питательным агаром с целью определения количества жизнеспособных клеток. Через 24-48 часов производили почет выросших колоний. Результаты (среднее арифметическое двух повторов) представлены в таблице 2.

Таблица 2 Динамика изменения концентрации клеток тест-штаммов Escherichia coli subtilis в физиологическом растворе в зависимости от содержания серебросодержащего препарата

Препарат	Концентрация	Концентрация клеток, КОЕ м/л			
	препарата, мг/л	исходная	Через 4 часа	Через 24 часа	
Контроль среды	0	500	460	785	
AgC100	0,3	500	0 (не обнаруж.)	0 (не обнаруж.)	
AgC100	1,0	500	0 (не обнаруж.)	0 (не обнаруж.)	

Как видно, в данных условиях добавление 0,3-1,0 мг/ мл препарата AgC100 в питательную среду приводит полному подавлению

развития E.coli уже через 4 часа контакта. Однако следует отметить, что эта питательная среда (питательный бульон с 0,1% глюкозы) не является благоприятной для развития E.coli, так как прирост биомассы за 24 часа весьма незначителен и составил чуть более 50% от исходного количества. Другими словами, минимизация питательной среды по ростковым свойствам не позволяет тест-штамму нормально развиваться, поэтому заключения об антимикробном действии каких либо агентов в этих условиях не совсем корректны.

Исходя из полученных результатов в дальнейшем исследованиях штамм E.coli решили культивировать на среде N2 (ГосФармокопея XI), используя в качестве среды обогащения для бактерий семейства Enterobacteriaceae. Состав среды N2 (Γ / π):

-	панкреотический гидролизат рыбной муки	20,0
-	экстрат пекарских дрожжей	2,0
-	натрий фосфорнокислый 2-замещенный	3,0
-	калий фосфорнокислый 1-замещенный	2,5
-	глюкоза	10,0
-	феноловый красный	0,08
-	малахитовый зеленый	0,015
-	pН	$7,2\pm0,2$

Очередной оценочный эксперимент был поставлен методически так же, как и предыдущий. В питательную среду №3 исходной концентрации клеток $\sim 10^3$ на мл вносили препарат AgC100 в концентрации 0,5-0,05 мг /мл, инкубировали 24 часа при 37оС. И учитывали результаты ориентировочно - визуально и точно путем посева последовательных 10-кратных разведений культурных растворов на чашечках Петри с питательным агаром и последующим количественным подсчетом выросших колоний клеток через 24-48 часов. Результаты представлены в таблице 3.

Таблица 3 Влияние различных концентраций препарата AgC100 на рост E.coli в питательной среде №3 (инкубация 24 часа)

Концентрация клеток, колониеобразующих единиц на мл, КОЕ/мл					
Контр	Концентрация препарата AgC100, мг/мл				
исходная	Через 24 часа	0,5	0,25	0,1	0,05
$1,1\ 10^3$	$3,5 \ 10^8$	$1,6\ 10^2$	$7 10^7$	$3,3 \ 10^8$	$3,4\ 10^8$

Полученные результаты свидетельствуют о благоприятных условиях для развития тест штамма E.coli.

Измерение бактерицидной активности

Засеянную среду разливали во флаконы по 20 мл и вносили различные концентрации исследуемых препаратов из расчета, чтобы их концентрация составляла 1,0-0,5-0,25 мг/мл. Все варианты опыта — в двух параллельных повторах. Через 20 часов инкубации при 37оС из 2-х параллельных флаконов готовили среднюю пробу, из которой делали ряд 10-ти кратных разведений (10^0 - 10^7) и рассевали их на чашках Петри с питательным агаром. Через 24-48 часов производили подсчет выросших колоний; результат рассчитывали как среднеарифметическое из 2-3 последовательных разведений, поддающихся учету. Результаты представлены в таблице 4.

Таблица 4 Сравнение антимикробной активности серебросодержащих цеолитов (инкубация 20 часов)

Препарат	Исходная концентра- ция клеток (КОЕ/мл)	Концентрация клеток (КОЕ/мл) при различных концентрациях препарата (мг/мл)			
		0	1,0	0,5	0,25
Контроль питательной среды №3	4 10 ²	9,9 108	-	-	-
Контроль матрицы Na- clino	4 10 ²	-	1	1,0 10 ⁹	-
AgC8a	$4 \ 10^2$	9,9 10 ⁸	5,7 10 ³	4,2 10 ⁵	$1,8\ 10^6$
AgC100	$4 \ 10^2$	9,9 10 ⁸	0 (отсут.)	$1,7 \ 10^5$	1,5 108
AgC500	$4 \ 10^2$	9,9 10 ⁸	$2,2\ 10^6$	$1,2\ 10^5$	$1,0\ 10^9$

Полученные данные позволяют сделать вывод о том, что из испытанных 3-х серебросодержащих препаратов, наибольшей активностью обладает препарат AgC100. который в концентрации 1,0 мг/мл полностью подавляет рост E.coli (бактерицидный эффект), а в концентрации 0,5 мг/мл проявляет выраженный бактериостатический

эффект, снижая численность бактерий почти на 4 порядка по сравнению с контролями.

Препарат AgC8a в испытанных концентрациях не оказывает бактерицидного действия, но проявляет устойчивую бактериостатическую активность. Снижая интенсивность роста бактерий на 5-3 порядка. Причем в концентрации 0,25 мг/мл по бактериостатической активности даже превосходил препарат AgC100.

Самой слабой активностью обладал препарат AgC500, который в концентрации 1,0 мг/мл лишь на 2 порядка снижал интенсивность роста E.coli. Более низкие концентрации этого препарата практически не влияли на рост тест - штамма.

Сопоставление физико-химических свойств серебросодержащих препаратов с их антимикробной активностью

Поскольку все исследуемые образцы отличаются между собой только температурой восстановления, то это дает основания полагать, что определяющим фактором, влияющим на антибактериальную активность, является состояние в них серебра.

С целью определения состояния серебра в серии изучаемых образцов были записаны их электронные спектры диффузного отражения.

В спектре не восстановленного образца (AgC8a), наблюдалась полоса поглощения (п.п.) ниже 260 нм, которая относится к поглощению Ag^+ .

Восстановление образца при температуре 100° С (образец AgC100), привело к значительному усложнению спектра ЭСДО. В нем появились новые высокоинтенсивные п.п. при 290, 320 и 380 нм. Согласно [1] эти полосы поглощения можно отнести к поглощению кластеров $Ag_8^{\sigma^+}$, Ag_8^{0} (290, 320 нм) и квазиколлоидных частиц с размером ~ 1 нм. (380 нм) [2]. Следовательно, в образце AgC100 основная часть серебра находится в виде кластеров и квазиколлоидных частиц. Остальные состояния серебра могут рассматриваться как примесные.

В спектре образца восстановленного при 500° С вновь наблюдается появление значительного поглощения в области 380-800 нм, что свидетельствует об образовании достаточно крупных частиц серебра [3]. Наличие дополнительного максимума в длинноволновой об-

ласти спектра (600 нм) говорит о том, что эти частицы частично могут образовывать фрактальные кластеры.

Таким образом, изучение состояния серебра в исследуемой серии образцов указывает на значительные различия между ними. В не восстановленных образцах серебро присутствует, в основном, в ивде ионов. При температуре восстановления порядка 100 °C основное состояние серебра – кластеры и квазиколлоидные частицы. Дальнейшее повышение температуры восстановления приводит к процессу агрегации кластеров и небольших частиц серебра в более крупные, что связано, очевидно, с увеличением подвижности серебра с ростом температуры восстановления.

Если сопоставить полученные данные с результатами бактериологического исследования, то можно заметить определенную взаимосвязь между ними.

В том случае, когда в образце серебро присутствует в виде кластеров и квази коллоидных частиц наблюдается высокая антибактериальая активность. Вероятно, это обусловлено, двумя благоприятными факторами: во-первых, площадь поверхности серебра в этом случае очень большая, во- вторых, серебро относительно равномерно распределяется по поверхности цеолита. Оба этих фактора обеспечивают как большую площадь соприкосновения серебра с бактериальной флорой, так и, возможно, оптимальную скорость диссоциации серебра из кластера или частицы в бактериальную среду.

В случае образца AgC8, где серебро присутствует в основном в виде ионов оно не оказывает бактерицидного действия. Однако в данном случае, даже при небольшой концентрации образца имеет место значительный бактериостатический эффект. Т.е. наблюдается значительное снижение интенсивности роста бактерий.

Отсутствие бактерицидной активности у образца, содержащего частицы серебра больших размеров может быть обусловлено, как малой поверхностью соприкосновения с бактериальной флорой, так и низким значением коэффициента диффузии ионов серебра с поверхности такой частицы.

Значительные отличия в биологической активности серебра могут свидетельствовать о разном механизме воздействия серебра, находящегося в виде ионов, кластеров и частиц на клетку бактерий.

Таким образом, приведенные выше данные указывают на прямую взаимосвязь между физическим состоянием серебра на поверхности цеолита и его антибактериальными свойствами.

Полученные данные могут быть использованы при разработке технологии приготовления лекарственных препаратов, содержащих в своем составе серебро.

Авторы выражают благодарность Э. Флорес, М. Сайнтс, Х. Перальта, П. Касийайс за техническую помощь в работе. Эта работа была выполнена благодаря финансовой поддержки Мексиканских грантов CONACYT No 42568-Q и PAPIIT-UNAM IN 109003.

Литература

- N. Bogdanchikova, B. Concepción-Rosabal, V. Petranoski, M. Avalos Borja and G. Rodríguez-Fuentes // In: Proceedings of the 13th International Zeolite Conference, Montpellier, France, Stud. In Surf. Sci. and Catal. – 2001. V. 135. – P. 243.
- 2. Б.Г. Ершов, Наночастицы металлов в водных растворах: электронные, оптические и каталитические свойства // Рос.хим.ж. (Ж. Рос. Об-ва им. Д.И. Менднлеева), 2001, Т. XLV. № 3. С. 20-30
- 3. Б.М. Сергеев, М.В. Кирюхин, Ф.Н. Бахов, В.Г. Сергеев. Фотохимический синтез наночастиц серебра в водных растворах поликарбоновых кислот. Влияние полимерной матрицы на размер и форму частиц // Вестн. Моск. Ун-та. Сер 2, Химия. — 2001, - Т. 42, № 5, - С. 308-314.